pressure; Q, volume flow rate of gas in bed (filtration rate); Qq, parameter in (7); q, total mass of gas
entering per unit time; R, gas constant; S, cross-sectional area of apparatus; T, temperature; Ty, T,,
lengths of static and dynamic periods of autooscillation cycle; t, time; V, volume of space under plate;
w, velocity of piston; z, coordinate of lower surface of piston; «, 3, v, constants in (11); v, frequency
of autooscillations; p, density of gas; o' effective density of bed; o, parameter in (7); ¢, hydraulic re-
sistance per unit volume; w, parameter in (14). Indices: .1, 0, s, ‘'m, initial state of the bed in the static
stage, the state of minimum quasifluidization, the stationary state, and the state with the maximum pres-
sure drop, respectively; o, state of the gas above the bed.
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COOLING OF A COARSE LUMP IN A BED OF
"FINE" PARTICLES

F. R. Shklyar, V. M. Malkin, ‘ UDC 536.244
B. S, Rasin, and F. N. Lisin

The cooling of a coarse lump having the form of a rectangular prismina blow—thrwgh bed
of "fine" particles is discussed. A solution is obtamed for large and small values of Fo by
using Laplace transforms.

The heating or cooling of a polydisperse bed of lumps is a frequently occurring practical problem.
Large lumps have many through pores so that a gaseous medium not only flows around a coarse lump, but
also filters through its pores and increases the heat transfer.

Thus, the physical problem is the following, A bed through which air filters contains a coarse lump
at a certain depth, At zero time the whole bed, including the lump, is heated to the temperature tjand is
cooled by air with a temperature T!' at the inlet to the bed. It is required to find the time to cool the coarse
lump to a given temperature.

The following assumptions and simplifications are made.

All-Union Scientific-Research Institute of Metallurgical Heat Engineering, Sverdlovsk. Translated
from Inzhenerno-Fizicheskii Zhurnal, Vol. 30, No. 3, pp. 434-440, March, 1976, Original article sub-
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Fig. 1. Schematic diagram of the
cooling of a coarse lump in a bed of
"fine" particles.

1. The temperature of the gas everywhere near the coarse lump is equal to the temperature at the
entrance to the lump, This temperature is determined by the dynamic cooling of a bed of "fine" particles
whose diameter is found by averaging over the structure. '

In certain practically important cases, for example, in the cooling of crushed sinter with lumps up
to 200 mm in a bed of small lumps with an average diameter of 30-50 mm, the change in temperature of
the gas over the height of a coarse lump occurs in an insignificant fraction of the cooling time so that in
general it can be assumed to depend only on time.  We consider such a case below.

2, The amount of air filtering through a lump is small, and the internal heat-transfer surface of a
lump is large, so that without a large error the temperature of the gas in the pores can be taken equal to
the temperature of the material.

3. The coarse lump is assumed to have the form of a rectangular parallelepiped with the gas flow at
right angles to one of its faces.

A schematic diagram of the problem is shown in Fig. 1.

Assuming that the thermophysical properties of the bodies are constant the mathematical problem
can be formulated as follows:

taking account of filtration the heat-conduction equation is

00 09 . 09 Lo 0% %8
=—M K K — 1
dFo iz T e Y gm T ®
the boundary conditions are
' o9 .
Z=0, A = Bi, (6 —8); (2
o9 .
v—o, 2 _q @
o - .
Y=1, e Bi, (6 —8); T (5)
_ 9 _ .
X=0 5% = @
i) .
=1, —-=Bi0—9), !
the initial conditions are
Fo=0;.9 = 1. (8
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The temperature of the gas 6 depends on Fo, This dependence is determined from:the known solution
of the problem of cooling a bed of identical particles of average size [1].

We obtain the solution of the problem for a variable air temperature from the solution for constant
temperature by using Duhamel's formula [2]. Denoting by 4' the solution of the problem for 6 =0, we ob-
tain

Fo

8=1— Y(l_e(e))

0

W (Fo—e, X, V. 2)
dFo '

9

‘We approximate G(Fo) by a step function, Then

_1_2(1—9,){13 ((n—i)AFo, X, Y, Z)— ¢ ((n+ 1 — ) AFo, X, Y, Z)}. a0

i=1

Following [2] it is easy to show that the solution of Eq. (1) for 6 = 0 with boundary conditions (2)-(7) and
initial conditions (8) can be written as the product of the solutions of the corresponding one-dimensional
problems, i.e.,

' 9 = 81 (Fo, Z)98:(Fo, )9 (Fo, X),
where & satisfies the equation '

0% 6{}1 3%,
p FO — M = + 622 (11)

and boundary conditions (2) and (3) (¢ = 0); é"z and 193 satisfy the one-dimensional heat-conduction equation
whose solution for boundary conditions 4)-(7) is known [2].

Equation (11) with boundary conditions (2) and (3) and initial conditions (8) was solved for 6 = 0 by an
operational method. By taking Laplace transforms we obtain (s — Fo)

T e/ T
ny (“) rs o)/ ( ) +sz] exp [—’;’—(Z—l)]—
—Bi eXP(A; Z)[(—M—JrBil)sh"/(%—)?Jrs (1—2)+

T oV BT o)

oo snay/ T oy BT
[_— (Bi, — Bi,) — Bi, B:o—s]sh 1/( ) +s } (as)

The numerator and denominator of Eq. (12) can be written as generalized polynomials by dividing by
J(M/2)* +s. Consequently, the original can be found by using the expansion theorem [2].

where

After appropriate transformations we obtain

=§ {Bilexp [—-——~(1—Z)][ Prcosp, Z —
—_ (%—‘Bio) sin p,Z ] + Bi, exp ( ) K%/I— 311)
X sinp, (1 —Z) + p, cosp, (1—2) ]} exp {[— (%4-—) — }Lf‘] Fo} , (14)

where
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¢n=[ui+(£)2“5‘““ (Bi, + Biy+2) — —Sn
. 2 2n

o M \?2 N | ’
X [Bi, + Bi, + Bi,Bi,—u2 — (3—) ~ 5 (BH"“B‘O)]}: (15)

un is a root of the equation

Mo . M \2 .

= (Bi,—Bi) + (7) — Bi, Bi,+ p
p (Biy+ Biy)

ctgp = (16)
For M =0, Egs. (14)-(16) have a known solution [3]. The infinite series in (14) converges very

slowly for large values of M and small Fo, and high accuracy is required in the calculation of the roots

#n and the terms of the series.

Series (14) was summed on a Minsk-22 computer using double-length numbers [5] which increases
the accuracy of representing numbers to 10716, It turned out that for M ~ 20 and any Fo = 0.001 it was
sufficient to maintain a computational accuracy of ~107% and 50 terms of the series. This accuracy was
also sufficient for M ~ 60 and Fo = 0,01, For the range 0,01 > Fo = 0,003 the accuracy had to be in-
creased to 107'% (50 terms of the series). Finally, for Fo = 0,001 even this accuracy and practically an
infinite number of terms of the series (up to 200) were insufficient to obtain. a concrete result, indicating
the necessity for a further increase in accuracy. For large M (M ~ 100) even for Fo = 0,003 a result
could not be obtained from (14) by using double~length numbers.

For small values of Fo (large s) the transform of the temperature can be written in the form
TM M [ STEE
Bi, exp l’—~—A—4— (1—2)| exp [—— i/ ( ) —l—s(l—Z)} Bi, exp (-—— Z) exp[-—l/(ﬂ—) +&Z
5 1 1 . 2 7 2
| =~ - — s e
5 : [ M\? M
s(But )/ (B) +s+4) s(Bur )/ () +s—2)
Using the displacement theorem and the Laplace transform inversion formulas [4], we obtain, finally,

8 ~1—Bi, [SRCA=2 My [I—E ~M s e [ 122 o M yg]
: 1‘{ SBL+ M) | 2VFe 2 VFol + YR T 2 VFo

A1

2Bi;

Bi

_m exp [Bi, (1 — Z) + Bi, (Bi, -+ M) Fo] erfc [ 1—Z

271 Fo

(e ) Ve

_ni | exp(MZ) ; z M ‘flh’“- , 1 ; [ Zz M ol _
B1°{2(BiO—M) ede | e T VI T, oy 2 Ve
Bi0~_];i , "
—mexp [Bi, Z -+ Biy(Bi, — M) Fol erfc[ 2V + (Bio_?) VFO}} . (18)

It is natural to expect that in using Eq. (18) the most stringent restrictions on the values of Fo will
be at the points 0.5 < Z = 1 and the critical value of Fo will decrease with increasing M, Calculations

show that for M < 100, Eq. (18) gives satisfactory results for Z =1 and Fo = 0.01, agreeing with the com~
puter solution of (14).

For large M we can write

]/( ) st 19)

Using (19) in the transforms (12) and (13) for the argument of the hyperbolic functions, we obtain for
the original

. —M(1— . ’ —
O =~1— exp[Bi:—}-(;VI 2l {(Bll-{——};) __1;[_ erf (—fzi 1// 0— IMZ )—-(Bil—{—%{) X

——— O'(FO ﬁZ)
1—Z 1—2Z M
0 —7 ]}a (Fo—— W )-—— » X

X exp [(Bif+Bi1M) (Fo— 1'1&2 )] erfe [(Bil-{——%d—) I//F
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Fig. 2, Dependence of dimensionless tem-

perature .9; on dimensionless time Fo for
Z=1:1) M=104; 2) 62.4; 3) 20.8,
Using (14); b) (18).

(. M\ M M /77 7\ .. M
X{(B‘O—T)* g e (_T l/FO*w)—Blo—T exp [(Bi%-—Bio/m (.Fo—zzq—)]x
Fo—ﬂ v

X erfc [(Bio—ﬂ— Z

1))/ 5l emimesoso—an [ e[ (4).] o[ Y]
(ot ) [0 ] o (Bt 5] [ 2 )
ot e (w4 (o2 1] [ (252

Y B (e o 252 )

5| MZ )_exp [(Bif—}-BilM) (Fo— 2;42 )]x

X[Q (Bil+ _/;4_)2(1:0_——— 2;2 )+3J erfc [(Bl + ) ]/ Fo— ]}

a)

(20)
As M — =, solution (20) goes over into:the following:
{
1 for Fog _{_;
M
8 = ! (1)
0 for Fo> ~Z—
M

Some results for Z =1 and various M are shown in Fig. 2, which compares results calculated by using (14)
and (18).

NOTATION
4(Fo, Z, Y, X) =

{t - T/, — T")\temperature of lump; 6(Fo)=(T — T‘)/(to —T"), temperature of gas
flowing around lump; Z = =

=1z/zp X =%/%X5 Y =y/yg coordinates of point; Fo =ar/z§, Fourier number;

Z 5 .
Kx = z¢/%4, Ky =2zy/¥,, geometrical characteristics of lump; M =cgogWyzy/ A, criterion characterizing
heat transfer by gas filtering through lump with velocity Wy; Bi, =

Biy + M, Bij =ayzy/ A, Biy =asyy/ A,
Bis = agxy/ A, Biot numbers; oy, a,, og, heat-transfer coefficients at corresponding faces; A, ¢ = A/cp,
¢, p, thermal conductivity, thermal diffusivity, specific heat and apparent density of Iump, Cg, 0gs spe-
cific heat and density of gas.
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THERMAL DISSOCIATION OF A POLYDISPERSE
LUMP MATERIAL

N. N. Marutovskaya, N. P. Tabunshchikov, UDC 536,21:622,78
A, M. Aizen, and I. M. Fedotkin

The problem of the dissociation of a polydisperse lump material is examined using the statistical
approach and making due allowance for femperature-dependence of the coefficient of thermal con-
ductivity.

A number of papers [L-5] have been written on the subject of the process of thermal dissociation of ma-
terials in lump form. It has been shown experimentally [2]that there is a fairly clear interface between the
dissociated and undissociated substance which runs deep into the lump. This interface is the surface at which
the heat passing through the shell of reacted substance is consumed. The model of a heat exchanger with a
variable heat-exchange surface [5] is, therefore, suitable for use as a physical model of the process which is
compatible with the experiment. '

A formula for the time required for the dissociation of a single lump under the conditions of constant
thermophysical process characteristics is devised in [5] on the basis of several physically sound hypotheses
which simplify the investigation., It is, however, a well~known fact [6-8] that the thermophysical character-
istics of substances being heated are not constant, in particular, the coefficient of thermal conductivity can be
described as a linear function of temperature:

A=A (1 Faf). | (1)
It should be noted that if this relationship is disregarded for industrial furnace operating conditions,

there will be significant errors in the calculation of the material dissociation time. In addition, when samples
are heated, their porosity p is changed according fo the relation [9,10]

p=1152—0.0781. @)
By definition
p= Pr=—Pa 100. : (3)
oy

The dependence of the coefficient of thermal conductivity onthe temperature and apparent volumetric mass of
the material has been found in [7] in the form

A= 1.163 (— 1,011 — 0.066-10"% £ 4 1.513.1073 p,). @)
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