
pressure; Q, volume flow rate of gas in bed (filtration rate); Qq, parameter in (7); q, total mass of gas 
entering per unit time; R, gas constant;  S, cross-sectional area of apparatus; T, temperature; T1, T2, 
lengths of static and dynamic periods of autooscillation cycle; t, time; V, volume of space under plate; 
w, velocity of piston; z, coordinate of lower surface of piston; ~, /3, y, constants in (11); ~, frequency 
of autooscillations; o, density of gas; ~' effective density of bed; ~, parameter in (7); ~0, hydraulic re -  
sistance per unit volume; co t parameter in (14). Indices: 1 ,  0, s, ~m, initial state of the bed in the static 
stage, the state of minimum quasifluidization, the stationary state, and the state with the maximum pres- 
sure drop; respectively; o, state of the gas above the bed. 
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COOLING OF A COARSE LUMP IN A BED 

"'FINE" PARTICLES 

OF 

F .  R .  S h k l y a r ,  V.  M. M a l k i n ,  UDC 536.244 
B.  S.  R a s i n ,  a n d  F .  N. L i s i n  

The cooling of a coarse lump having the form of a rectangular prism in a blow-through bed 
of "fine" particles is discussed. A solution is obtained for large and small values of Fo by 
using Laplace transforms.  

The heating or cooling of a polydisperse bed of lumps is a frequently occurring practical problem. 
Large lumps have many through pores so that a gaseous medium not only flows around a coarse lump, but 
also filters through its pores and increases the heat t ransfer .  

Thus, the physical problem is the following. A bed through which air filters contains a coarse lump 
at a certain depth. At zero time the whole bed, including the lump, iS heated to the temperature t o and is 
cooled by air with a temperature T' at the inlet to the bed. It is required to find the time to cool the coarse 
lump to a given temperature.  

The following assumptions and simplifications are made. 

All-Union Scientific-Research Institute of Metallurgical Heat Engineering, Sverdlovsk. Translated 
from Inzhenerno-Fizicheskii Zhurnal, Vol. 30, No. 3, pp. 434-440, March, 1976. Original article sub- 
mitred February 7, 1975. 
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Fig .  1. Schemat ic  d m g r a m  of the 
cooling of a c o a r s e  lump in a bed of 
"fine" p a r t i c l e s .  

1. The t e m p e r a t u r e  of the gas eve rywhere  near  the c o a r s e  lump is equal to the t e m p e r a t u r e  at the 
en t rance  to the lump. This t e m p e r a t u r e  is de t e rmined  by the dynamic  cooling of a bed of "fine" pa r t i c l e s  
whose d i a m e t e r  is found by averaging  over  the s t r u c t u r e .  

In c e r t a i n  p r a c t i c a l l y  impor tan t  c a s e s ,  for example ,  in the cooling of c rushed  s in t e r  with lumps up 
to  200 mm in a bed of s m a l l  lumps with an a ve r a ge  d i a m e t e r  of 30-50 mm, the change in t e m p e r a t u r e  of 
the  gas over  the height of a c o a r s e  lump occurs  in an ins ignif icant  f r ac t ion  of the cooling t ime  so that in 
gene ra l  it can be a s sumed  to depend only on t i m e .  We cons ide r  such a case  below. 

2. The amount of a i r  f i l t e r ing  through a lump is sma l l ,  and the in te rna l  h e a t - t r a n s f e r  su r face  of a 
lump is l a rge ,  so  that  without a l a rge  e r r o r  the t e m p e r a t u r e  of the gas in the pores  can be t aken  equal to 
the  t e m p e r a t u r e  of the m a t e r i a l .  

3. The c o a r s e  lump is a s sumed  to  have the fo rm of a r ec t angu la r  pa ra l l e l ep iped  with the gas  flow at 
r igh t  angles  to  one of i ts  f aces .  

A schema t i c  d i a g r a m  of the p rob l em is shown in Fig .  1. 

Assuming  that  the t h e r m o p h y s i c a l  p r o p e r t i e s  of the bodies a r e  constant  the ma themat i ca l  p rob lem 
can be formula ted  as fo l lows:  

taking account  of f i l t r a t i on  the hea t -conduct ion  equation is 

a~ M a~ + K ~  a~ a2~ a2~ (i) 
avo az + -YU + az--T' 

the boundary conditions a r e  

ao 
Z = O, 0"-7 = Bi~ (0 - -  0); (2) 

Z =  1, . = Bi,  (O - -  O); 
OZ 

,9O 
Y = O ,  ~ = O; 

OY 

Y = I ,  - - - - = B i  2 ( 0 - 0 ) ;  
dY 

#O 
X = 0 ,  - -  = 0; 

a x  

ao 
x = I, = Bi 3 (0 - -  O), 

d x  

(3) 

(4) 

(5) 

(6) 

(7) 

t h e  i n i t i a l  c o n d i t i o n s  a r e  

Fo--- -O; ,O=l .  
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The temperature of the gas 0 depends on Fo. 
of the problem of cooling a bed of identical particles of average size [1]. 

We obtain the solution of the problem for a variable air temperature from the solution for constant 
temperature by using Duhamel's formula [2]. Denoting by ~' the solution of the problem for 0 =0, we ob- 
tain 

Fo 

O= 1 -- .I (1 --  0 (e)) 00' (FO--oFo e' X. Y, Z) de. 

0 

We approximate 0(Fo) by a step function, Then 
It 

O= 1 ~ X (I--0~) {b' ((n--i) h Vo, X, V, Z) -- i}' ((n + I r- i) A F0, X, Y, Z)}. 
/=I 

Following [2] it is easy to show that the solution of Eq. (1) for 0 = 0 with boundary conditions (2)-(7) and 
initial conditions (8) can be written as the product of the solutions of the corresponding one-dimensional 
problems, i.e,,  

! 

where ~1 satisfies the equation 
o' = o; (Fo, z) o; (Fo, Y) (Fo, X), 

This dependence is determined from:the known solution 

(9) 

(lO) 

o o; " a , , ~ ;  (11) FO"F-g-=--M~z -~ 07. = 

! ! 
and boundary conditions (2) and (3) (0 = 0); ~2 and ~3 satisfy the one-dimensional heat-conduction equation 
whose solution for boundary conditions (4)-(7) is known [2]. 

Equation (11) with boundary conditions (2) and (3) and initial conditions (8) was solved for O = 0 by an 
operational method. By taking Laplace transforms we obtain (s -- Fo) 

= 

_ _ / ( ~ - - ) 2 + s  c h / ( ~ - 1 2 + s Z ]  exp [ 2M---(Z--1)] - 

_Bi0exp/--~ Z ) [ ( - ~ + B i l ) s h ' ~ ( ~ - ) ' + s  ( l - - Z ) +  

where 

(s)=s (Bi z+Bio) - ~  + s  ch + s  -- 

(13) 

The numerator and denominator of Eq. (12) can be written as generalized polynomials by dividing by 
](M/2) 2 + s.  Consequently, the original can be found by using the expansion theorem [2]. 

After appropriate transformations we obtain 

1 {Bi~exp [ - - - ~ ( 1 - - Z ) ] [ ~ t n c ~  
n-=l  

(14) 

where 
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~ P n = [ 9 ~ + ( - ~ ' ) 2 ] { ~  ( B i ~ + B i ~  c~ X 2 ~ n  

X [Bi~ -~ Bi o + Bi~Bi o - -  p.~ - -  - -  T ' 

#n is a roo t  of the  equa t ion  

ctg 1~ = 

(Bil __ Bio) + __ Bi 1Bio+ ~r 
2 

t~ (Bil+ Bio) 

F o r  M = 0, Eqs .  (14)-(16) have a known so lu t ion  [3]. The  infini te  s e r i e s  in (14) c o n v e r g e s  v e r y  
s lowly  for  i a r g e  va lue s  of M and s m a l l  Fo,  and high a c c u r a c y  is r e q u i r e d  in the  ca l cu la t ion  of the roo t s  
#n  and the  t e r m s  of the  s e r i e s .  

S e r i e s  (14) was  s u m m e d  on a Minsk-22  c o m p u t e r  us ing  doub le - l eng th  n u m b e r s  [5] which i n o r e a s e s  
the  a c c u r a c y  of r e p r e s e n t i n g  n u m b e r s  to  10 -16, It t u rned  out tha t  fo r  M ~ 20 and any Fo  -> 0.001 it was  
suf f ic ien t  to  m a i n t a i n  a compu ta t i ona l  a c c u r a c y  of ~10 -8 and 50 t e r m s  of the  s e r i e s � 9  This  a c c u r a c y  was 
a l s o  suf f ic ien t  fo r  M ~ 60 and Fo  >- 0.01. F o r  the  r a n g e  0.01 > Fo ~ 0.003 the  a c c u r a c y  had to  be in -  
c r e a s e d  to  10 -15 (50 t e r m s  of the  s e r i e s ) � 9  F ina l ly ,  for  Fo = 0.001 even  th is  a c c u r a c y  and p r a c t i c a l l y  an 
infini te n u m b e r  of t e r m s  of the  s e r i e s  (up to  200) w e r e  i n su f f i e i en t to  obtain a c o n c r e t e  r e su l t ,  indicat ing 
the  n e c e s s i t y  for  a f u r t h e r  i n c r e a s e  in a c c u r a c y .  F o r  l a r g e  M (M ~ 100) e v e n  for  Fo = 0.003 a r e s u l t  
could not be  obta ined f r o m  (14) by us ing  doub le - l eng th  n u m b e r s .  

F o r  s m a l l  va lues  of Fo ( large s) the  t r a n s f o r m  of the  t e m p e r a t u r e  can  be w r i t t e n  in the f o r m  

o, oxpl_ (,_,)1 {_ +s (. 

(15) 

(16) 

�9 (17) 
s Bio -}- -[- s - - - -~ -  

Using the  d i s p l a c e m e n t  t h e o r e m  and the  Lap lace  t r a n s f o r m  i n v e r s i o n  f o r m u l a s  [4], we obtain,  f inal ly ,  

O[ ~ 1 - - B i ~  {exp [ - - ( 1 - - Z )  M] erfc [ 1 - - Z  M V ~ ] + - I  
2 (Bi~ + M) 2 VP5  2 2Bi~ 

M 
Bi 1 + - -  

(Bivt_M)Bi ~ e x p [ B i ~ ( l - - Z ) + B i ~ ( B i ~ + M ) F o ]  erfc I - - Z  
2 VP5 

1 - - Z  M ] 
erfc - -  + ]/-Fo - -  

z VP5 T 

| 2 ( B i o - - M  ) 2V'F--o ~-k- ~ ~:F-~ -}- 2Bi----~ 2 ] / ~  2 

Bi ~ M 
Z 

Bio(Bi o_M)-exp[BioZ  + Bio(Bi . - M ) F o ]  eric - -  § Bi o -  ~ V-Fo (18) 
2 ] / - ~  * 

I t  is na tura l  to expect that in  using Eq. (18) the most s t r ingen t  r es t r i c t i ons  on the values of Fo w i l l  
be  at  the  points  0.5 < Z -< 1 and the  c r i t i c a l  va lue  of Fo wil l  d e c r e a s e  with i n c r e a s i n g  M. Calcu la t ions  
show tha t  for  M < 100, Eq.  (18) g ives  s a t i s f a c t o r y  r e s u l t s  for  Z = 1 and Fo -< 0.01> ag ree ing  with the  c o m -  
pu te r  so lu t ion  of (14). 

F o r  l a r g e  M we can  w r i t e  

. / '~I M ~ 2 M s 

l / tT-) -1- s ~ - - ~ -  --t M "  (19) 

Using (10) in the transforms (12) and (13) for the argument of the hyperbolic functions, we obtain for 
the original 

• o , ,  ,, .)} o,,< [tB,,+_{__)F,T_ ,_z , = ( ' ~  
M " Bi 0 - M  ~< 

2 8 7  
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Dependence of dimensionless t em-  
? 

perature ~l on dimensionless t ime Fo for 
Z =1-  1) M=104;  2) 62.4; 3) 20.8. a) 
using (14); b) (18). 

' M 

F o - -  2--__Z.Z 
M 

~o,~[l~,~247 S ~ :~+ 11• 
o " k 2 /  J 

X V~- - - s - - (B i lq - -~ - )  eexp [(Bil  .4- 2M---.)ee][2(Bi~q-2M~)'eq-3 ] erfc [ (Bix+  2M-~ --) ~'~]}de--  

/ Fo 2 - - Z  
X V M (Bi~ +- -~- )  (Vo 2--Z.).exp[(Bi~+Bi~M)(Fo_.2--Z 

r~ M M -/jx/] 

~ [~ (~,~+ ~_; (~o ~ '  ) +~] ~ [(~"+ ~) V' ~~ --~-~ :1}"_ (20) 

As M ~ ~o, solution (20) goes over into~;the following: 

f Z 

I " 
1 for F o ~  M 

~; = �9 (21) 

I z 0 for Fo > - ~ - .  

Some resul ts  for Z = 1 and various M are  shown in Fig. 2, which compares resul ts  calculated by using (14) 
and (18). 

NOTATION 

~(Fo, Z, Y, X) = (t - T ' ) / ( t  0 - T'}~temperature of lump; 0 (Fo)= (T - T ' ) / ( t  0 - T'),  temperature  of gas 
flowing around lump; Z = z /z  0, X = x /x  0, Y =Y/Yo, coordinates of point; Fo = ~r/z~, Four ier  number; 
K X = z0/x 0, Ky = z0/Y0, geometr ical  character is t ics  of lump; M = Cg0gW0z0/A, cr i ter ion characterizing 
heat t r ans fe r  by gas fil tering through lump with velocity W0; Bi 0 = Bi 1 + M, Bi I = ~lz0/h ,  Bi 2 = ~zy0/A, 
Bi 3 = ~3xo/h, Blot numbers;  s t ,  a2, ~3, hea t - t ransfer  coefficients at corresponding faces; s a = h / c p ,  

c, D, thermal  conductivity, thermal  diffusivity, specific heat and apparent density of lump; Cg, p g, spe- 
cific heat and density of gas .  
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THERMAL DISSOCIATION OF A POLYDISPERSE 

LUMP MATERIAL 

N. N. Marutovskaya, N. P. Tabunshchikov, 
A. M. Aizen, and I. M. Fedotkin 

UDC 536.21:622.78 

The p rob lem of the d i ssoc ia t ion  of a po lydisperse  lump m a t e r i a l  is examined using the s ta t i s t i ca l  
approach  and making due al lowance for t empe ra tu r e -dependence  of the coefficient  of t h e r m a l  con-  
ductivi ty.  

A number of papers [1-5] have been written on the subject of the process of thermal dissociation of ma- 
terials in lump form. It has been shown experimentally [2] that there is a fairly clear interface betweenthe 
dissociated and undissociated substance which runs deep into the lump. This interface is the surface at which 
the heat passing through the shell of reacted substance is consumed. The model of a heat exchanger with a 
variable heat-exchange surface [5] is, therefore, suitable for use as a physical model of the process which is 
compatible with the experiment. 

A formula for the time required for the dissociation of a single lump under the conditions of constant 
thermophysical process characteristics is devised in [5] on the basis of several physically sound hypotheses 
which simplify the investigation. It is, however, a well-known fact [6-8[ that the thermophysical character- 
istics of substances being heated are not constant, in particular, the coefficient of thermal conductivity can be 
described as a linear function of temperature: 

= ~0 (1 + ~0t). (1) 

It should be noted that if this re la t ionship  is d i s rega rded  for industr ial  furnace  operat ing conditions, 
t h e r e  will be significant  e r r o r s  in the calculat ion of the ma te r i a l  d i ssoc ia t ion  t ime .  In addition, when samples  
a r e  heated, the i r  poros i ty  p is changed according to the re la t ion  [9, 10] 

By definition 

p ~ 115.2--0.078 t. (2) 

Pz--Pa 100. (3) P 
Pz 

The dependence of the coefficient  of t h e r m a l  conductivity on the t e m p e r a t u r e  and apparent  vo lumet r ic  mass  of 
Che ma te r i a l  has been  found in [7] in the f o r m  

= 1.163 (--  1.0i 1 - -  0.066.10 -3 t ~- 1.513. l0 -3 pa). (4) 
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